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Abstract

To give vector-based representations of meaning more structure, an
approach proposed in Piedeleu et al. (2015); Sadrzadeh et al. (2018);
Bankova et al. (2018) is to use positive semidefinite (psd) matrices.
These allow us to model similarity of words as well as the hyponymy
or is-a relationship. To compose words to form phrases and sentences,
we may represent adjectives, verbs, and other functional words as mul-
tilinear, positivity preserving maps, following the compositional distri-
butional approach introduced in Coecke et al. (2010) and extended to
the realm of psd matrices in Piedeleu et al. (2015), but it is not clear
how to learn representations of functional words when working with
psd matrices. In this paper, we introduce a generic way of composing
the psd matrices corresponding to words. We propose that psd matrices
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for verbs, adjectives, and other functional words be lifted to completely
positive (CP) maps that match their grammatical type. This lifting is
carried out by our composition rule called Compression, Compr. In con-
trast to previous composition rules like Fuzz and Phaser (Coecke and
Meichanetzidis, 2020) (a.k.a. KMult and BMult (Lewis, 2019a)), Compr
preserves hyponymy. Mathematically, Compr is itself a CP map, and
is therefore linear and generally non-commutative. We give a number
of proposals for the structure of Compr, based on spiders, cups, and
caps, and generate a range of composition rules. We test these rules on
sentence entailment datasets from Kartsaklis and Sadrzadeh (2016), and
see some improvements over the performance of Fuzz and Phaser. We
go on to estimate the parameters of a simplified form of Compr based on
entailment information from the aforementioned datasets, and find that
whilst this learnt operator does not consistently outperform previously
proposed mechanisms, it is competitive and has the potential to improve
with the use of a less simplified version.

Keywords: hyponymy, matrix-based representations of meaning, pos-
itive semidefinite matrices, completely positive maps

1. Introduction

With similarity measured by the inner product of normalised word vectors,
vector-based representations of words have been extremely successful in
many applications, such as translation, thesaurus generation, and paraphras-
ing. However, as well as similarity, there are a number of other important
relationships between words or concepts, one of these being hyponymy or
the is-a relation. Examples of this are that cat is a hyponym of mammal,
but we can also apply this to verbs, and say that sprint is a hyponym of run.
This relationship is important in modelling human concept use, as it links to
the important notion of categorisation - if we see a big cat we know that it is
probably dangerous, whether it is a jaguar or a leopard (Murphy, 2003). It is
also important in its role in inference - from ‘Some dogs bark’ we may infer
‘some animals bark’ due to the hyponymy relation holding between dogs and
animals (Lyons, 1968; Gagné et al., 2020). As such, modelling hyponymy
is important for natural language processing tasks that are related to cate-
gorisation and inference. These tasks form an important and thriving area
of research, and a number of challenges and large datasets have been devel-
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oped in the area, for example the PASCAL Recognising Textual Entailment
Challenges (Dagan et al., 2005), the FraCaS test suite (Cooper et al., 1994),
the Stanford Natural Language Inference dataset (Bowman et al., 2015b) and
the extended MultiNLI (Williams et al., 2018).

Within vector-based semantics based on co-occurrence statistics, there
have been several alternative approaches to building word vectors that can
represent hyponymy and entailment relationships. A fruitful approach in
distributional semantics is based on a principle known as the distributional
inclusion hypothesis or DIH. This hypothesizes that given two words F1 and
F2, whereF1 is a hyponym, i.e. more specific thanF2, the more general word
F2 will be seen in all the contexts that the more specific word F1 is seen in,
and more. This approach was developed and extended in a number of works,
including Ge�et and Dagan (2005); Weeds et al. (2004); Kotlerman et al.
(2010); Lenci and Benotto (2012), in which directed measures of similarity
are developed. Related to the distributional inclusion hypothesis is the
entropic approach of Herbelot and Ganesalingam (2013), who examine the
Kullback-Leibler divergence between the probability distributions encoded
by two distributional word vectors. More recent examples of alternative ways
of building word vectors include using non-Euclidean geometries (Nickel and
Kiela, 2017; Nguyen et al., 2017; Le et al., 2019), or specialising word vectors
for entailment (Vuli∆ and Mrk�i∆, 2018). Other approaches include defining
a vector lattice for word vectors (Clarke, 2009), looking at properties that
are not shared between words (Rimell, 2014), or looking at the dispersion of
a word representations (Kiela et al., 2015).

If we wish to use the hyponymy relationships between words to provide
information about entailment in sentences in which they are used, it is
necessary to compose the words into sentences in some way. Within vector-
based models of meaning, there are a number of approaches to composing
words to form phrases and sentences. A key approach in this field is that
of Mitchell and Lapata (2010). In that paper, the authors propose that
word vectors can be combined by means of a multilinear map to form a
combined representation. For example, suppose that we have vectors E,F 2
R= representing two words, and a multilinear map ⇠ : R= ⌦ R= ! R<, then
the sentence vector is represented as B = ⇠ (E,F). At the time, learning the
parameters of such a map was considered too di�cult, and so element-wise
combinations were proposed, such as pointwise multiplication or addition
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of the two vectors.
Another key approach to forming phrases and sentences is via hierarchi-

cal neural network structures such as in Socher et al. (2013); Bowman et al.
(2015a), or by learning sentence representations directly, as in Conneau et al.
(2017); Kiros et al. (2015); Reimers et al. (2019). These approaches use large
neural network structures to generate sentence vectors. The approaches in
Socher et al. (2013); Bowman et al. (2015a) could be seen as extensions of
the Mitchell and Lapata (2010) approach, in that the aim in these papers is to
learn a composition function, which when provided with vector inputs and
composition order, will output a sentence vector.

A third approach to forming phrases and sentences can be summarised
as tensor-based composition. This approach was introduced in Coecke et al.
(2010) and independently in Baroni and Zamparelli (2010); Paperno et al.
(2014). The approach introduced in Coecke et al. (2010) is often termed
DisCoCat, standing for Categorical Compositional Distributional semantics,
and detail on this approach is given in section 2. Briefly, the idea is that
nouns and sentences are modelled as vectors, and functional words such
as adjectives and verbs are modelled as multilinear maps. In this paper
we will be working within the DisCoCat framework. There are various
di�erent methods proposed for learning the word representations needed
in DisCoCat. In early work, nouns were usually modelled as count-based
vectors, in which the parameters of the vectors were set based on their
distribution in a large corpus. To define the parameters of the matrices and
tensors needed for functional words, an approach pioneered in Grefenstette
and Sadrzadeh (2011); Kartsaklis et al. (2016, 2012) is to build a word
representation based on the arguments of the functional word and then lift
this representation to the correct space using Frobenius algebras - in the case
of adjectives, for example, this would take a vector-based representation of
an adjective and lift it to a matrix by putting the vector along the diagonal of
the matrix. Another means of building the required tensors is via regression
learning. Here, holistic vectors for e.g. ‘red car’, ‘red brick’, ‘red house’
etc. are learnt and a matrix for ‘red’ estimated via linear regression over
the vectors for ‘car’, ‘brick’, ‘house’, and so on (Grefenstette et al., 2013).
This approach was extended and refined in Kartsaklis et al. (2014) where
word representations were improved using a step of prior disambiguation.
In WÚnholds et al. (2020) the use of regression techniques was combined
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with neural methods based on word2vec that allow the learning of word
matrices and tensors automatically. In the present paper, our approach has
most similarity with the early methods of lifting word representations to the
correct vector space, however we also trial a small scale regression method.

Whilst the DisCoCat framework is successful in composing words to
form phrases and sentences, it does not have an immediately obvious way
of representing hyponymy and entailment. This problem was successfully
addressed in Kartsaklis and Sadrzadeh (2016), which proposes a tensor-based
variant of the distributional inclusion hypothesis. In that paper the authors
propose combination methods for noun and verb vectors that are motivated
by the distributional inclusion hypothesis. They show how features can
be expected to be preserved under the di�ering combination mechanisms,
and how this relates to the distributional inclusion hypothesis. They test
their word representations and combination methods using a wide range of
di�erent metrics, and find that a metric developed by them in earlier work
gives the highest figures. The work presented in the current paper addresses
the same task, and we use the dataset developed in Kartsaklis and Sadrzadeh
(2016) to assess performance.

An extension to the standard DisCoCat model was developed in Piedeleu
et al. (2015), in which positive semidefinite (psd) matrices are used to rep-
resent words. The authors showed that psd matrices can be used within the
same compositional framework as DisCoCat, and can be argued to provide
more structure than vectors. In particular, psd matrices can be used to model
ambiguity in word meanings. As well as providing the theoretical founda-
tions for using psd matrices within DisCoCat, Piedeleu et al. (2015) built
matrices for words by mixing together the vectors for di�erent senses of the
word. The use of density matrices for lexical ambiguity was further explored
in Meyer and Lewis (2020) where a method for building density matrices for
words on a larger scale was proposed.

A second way in which psd matrices provide more structure is in mod-
elling hyponymy. In Sadrzadeh et al. (2018) the use of psd matrices to
model hyponymy between words and sentences is proposed. In this work, a
hyponymy relationship between two words is modelled as a function of the
KL-divergence between the two matrices of the words. This measure has
the nice property that hyponymy relationships between individual words lift
to an entailment relationship between the two sentences. In similar work,
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Bankova et al. (2018) model the relationship of hyponymy as the Löwner
order between two matrices. In the particular case of projectors, the Löwner
ordering can be seen as subspace inclusion – i.e., for projectors % and &
representing subspaces (% and (& of a given space + , % 6 & i� (% is a
subspace of (&. Applied to psd matrices in general, if we have two words
F� and F⌫ represented by matrices � and ⌫, we would like � 6 ⌫ when-
ever F� is a hyponym of F⌫. Bankova et al. (2018) provide a measure of
graded hyponymy between two matrices which again lifts to entailment at
the sentence level.

The graded hyponymy measure proposed by Bankova et al. (2018) and
the KL-divergence related measure proposed in Sadrzadeh et al. (2018) have
the limitation that to form the comparison �  ⌫, the subspace spanned by
� must be a subset of the subspace spanned by ⌫, which does not always
hold. To remedy this problem, Lewis (2019a) proposed two more measures
which do not have this limitation. These will be described in section 5.

A drawback of using psd matrices for word representations is that learn-
ing psd matrices from text is di�cult, mainly the larger matrices required for
functional words. Therefore, in Lewis (2019a); Coecke and Meichanetzidis
(2020), composition rules for psd matrices have been explored that lift psd
matrices into a higher dimensional space. This approach is very similar to
that proposed in Grefenstette and Sadrzadeh (2011); Kartsaklis et al. (2012),
where word representations for intransitive verbs are lifted from a space ,
to , ⌦, , and transitive verbs are lifted from , ⌦, to , ⌦, ⌦, . We
will discuss these composition rules in more detail in subsequent sections.
In Coecke and Meichanetzidis (2020) the composition rules are called Fuzz
and Phaser, in Lewis (2019a) they are KMult and BMult, respectively. For
this paper, we stick with the guitar pedal terminology.

In Sadrzadeh et al. (2018); Bankova et al. (2018), the composition meth-
ods used had the desirable property that hyponymy relations at the word
level lifted to the sentence level. Take two sentences of the same length with
the same grammatical types in the same order, where each word in the first
sentence is a hyponym of the corresponding word in the first. Then, for the
right kind of entailment relation, the hyponymy relations together with the
composition methods used would result in an entailment relation holding
between the two resulting sentences. However, this property is not shared by
Fuzz and Phaser. That is, given two pairs of words in a hyponym-hypernym
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relationship, the combination of the two hyponyms is not necessarily a hy-
ponym of the combination of the two hypernyms:

noun1 6 noun2 and verb1 6 verb2

does not imply
noun1 ⇤ verb1 6 noun2 ⇤ verb2

where the nouns and verbs are psd matrices, 6 is the Löwner ordering, and
⇤ is one of Fuzz or Phaser.

This paper aims to define a composition rule which is (i) positivity
preserving, and (ii) hyponymy preserving. In addition, we will require it to be
bilinear. If possible, it should also be non-commutative, since commutative
rules would make no di�erence between phrases like ‘dog bites Alice’ and
‘Alice bites dog’, which do not have the same meaning. Our composition
rule is called Compression, Compr, and it is, in fact, an infinite set of rules;
namely all completely positive maps from M< to M< ⌦ M<, where M<

denotes the set of real matrices of size < ⇥<. As a special case, we recover
Mult.

We use the following notation. �
⇤ denotes complex conjugate trans-

pose, and �⇤ means complex conjugate. PSD< denotes the set of positive
semidefinite (psd) matrices of size < ⇥ < over the real numbers, and a psd
element is denoted by > 0. We use the term functional words for verbs and
adjectives that take arguments. Nouns are not functional words.

2. Representing grammar and meaning

We work within the categorical compositional distributional (DisCoCat)
model of meaning introduced in introduced in Coecke et al. (2010), and ex-
panded on in Preller and Sadrzadeh (2011); Sadrzadeh et al. (2013). This is a
model for unifying statistical models of word meaning such as distributional
semantics together with formal semantic approaches to meaning. DisCoCat
uses a category-theoretic stance. It models syntax in one category, call it the
grammar category, and semantics in another, call it the meaning category.
A functor from the grammar category to the meaning category is defined,
so that the grammatical reductions on the syntactic side can be translated
into morphisms on the meaning side. As in Coecke et al. (2010) and much
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subsequent research, to model grammar, we will use pregroup grammar, as
described below, although there are also other choices of grammar (Coecke
et al., 2013; Maillard et al., 2014; WÚnholds, 2015; Muskens and Sadrzadeh,
2016; Moortgat and WÚnholds, 2017; Moortgat et al., 2020). As first in-
troduced by Piedeleu et al. (2015), and subsequently applied by Sadrzadeh
et al. (2018); Bankova et al. (2018), to model word meanings, we will use the
category of CPM(FHilb) of Hilbert spaces and completely positive maps
between them, using the aforementioned Löwner order to model hyponymy.

2.1 Pregroup grammar

Pregroup grammar is built over a set of types. We consider the set containing
= for noun and B for sentence. Each type has adjoints GA and G;. Complex
types are built up by concatenation of types, and we often leave out the dot
so that GH = G · H. There is a unit type such that G1 = 1G = G. Types and
their adjoints interact via:

n
A
G : G ·GA  1, n

;
G : G; ·G  1 [

A
G : 1  GA ·G, [

;
G : 1  G ·G; (1)

A string of grammatical types C1, ...C= is grammatical if it reduces, via the
morphisms above, to the sentence type B. For example, typing clowns as =,
tell as =A B=; and the truth as =, the sentence Clowns tell the truth has type
=(=A B=;)= and is shown to be grammatical as follows:

(nA 1 n ;) (= (=A B =;) =)  (nA1) (= =A B 1)  1 B 1 = B (2)

The above reduction can be represented graphically as follows:

= =
A
B=

;
=

Clowns tell the truth

2.2 Words as positive semidefinite matrices

The application of DisCoCat to psd matrices was first proposed in Piedeleu
et al. (2015). We give here an outline of the theory introduced in that paper.
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DisCoCat comes with an intuitive diagrammatic calculus which we will make
a little use of in later sections, but we refrain from outlining the calculus
here for space reasons. For an introduction to the diagrammatic calculus as
applied to linguistics please see Coecke et al. (2010) and for its specific use
with psd matrices please see Piedeleu et al. (2015). Positive semidefinite
matrices are represented in CPM(FHilb) as morphisms R ! " ⌦ "

⇤,
where " is some finite-dimensional Hilbert space and "⇤ is its dual. A
functor S from the category representing pregroup grammar toCPM(FHilb)
sends nouns and sentences to psd matrices, and adjectives, verbs, and other
functional words to completely positive maps, or equivalently psd matrices
in a larger space. Words are represented as psd matrices in the following
way. In the vector-based model of meaning, a word F is represented by a
column vector, |Fi 2 R< (for some <). To pass to psd matrices, a subset of
words ( will be mapped to rank 1 matrices, i.e. |Fi 7! |Fi hF |. The words
in ( are the hyponyms. The other words, which are hypernyms of the words
in (, will be represented as mixtures of hyponyms:

d =
’

F 2, ⇢(
|Fi hF | (3)

Within a compositional model of meaning, we view nouns as psd matrices in
M<, so that S(=) = M< and sentences as psd matrices in MB so that S(B) =
MB (for some < and B). An intransitive verb has type =A B in the pregroup
grammar, and is mapped by S to a psd element in M< ⌦MB. Equivalently,
an intransitive verb is a completely positive (CP) map M< ! MB. The
method for building psd matrices summarised in equation (3) maps words
of all grammatical types to psd matrices in M<. This is the correct type
for nouns, but wrong for other grammatical types. Taking the example of
intransitive verbs, we need to find a mechanism to lift an intransitive verb as
a psd element in M< to a CP map M< ! MB. There have been various
approaches to implementing this type lifting, which we now summarise.

Suppose = is a psd matrix for a noun, and E a psd matrix for a verb.
Proposals in Lewis (2019a); Coecke (2019); Coecke and Meichanetzidis
(2020) include the following – note in particular that Fuzz and Phaser
defined in Coecke and Meichanetzidis (2020) coincide with KMult and BMult
defined in Lewis (2019a):

• Mult(=, E) = = � E where � is the Hadamard product, i.e. (= � E)8, 9 =



320 De las Cuevas, Klingler, Lewis, and Netzer

=8 9E8 9 .

• Fuzz(=, E) = KMult(=, E) =
Õ

8 ?8%8=%8 where E =
Õ

8 ?8%8 is the
spectral decomposition of E. That is,

Fuzz(=, E) =
’
8

p
?8%8=%8

p
?8

• Phaser(=, E) = BMult(=, E) = E
1/2
=E

1/2. Let E =
Õ

8 ?8%8 be the
spectral decomposition of E. Then

Phaser(=, E) =
’
8, 9

p
?8%8=% 9

p
? 9

Some benefits and drawbacks of these operations are as follows. Mult is
a straightforward use of Frobenius algebras in the category CPM(FHilb).
It was originally introduced in Piedeleu et al. (2015) and can be seen as
an extension of the models used by Grefenstette and Sadrzadeh (2011) and
Kartsaklis et al. (2012) to lift verb vectors to the status of a linear map. It is
linear, completely positive and preserves hyponymy. However, linguistically
it is unsatisfactory because it is commutative. So it will map ‘Howard likes
Jimmy’ to the same psd matrix as ‘Jimmy likes Howard’ – which do not have
the same meaning and so should not have the same matrix representation.
On the other hand, both Phaser and Fuzz are non-commutative, however,
they are not linear and do not preserve hyponymy. In the next section, we
outline the properties we want from a composition method, and propose a
general framework that will allow us to generate a number of suggestions.

3. In search of more guitar pedals: Compression

For the rest of the paper, we assume that both nouns and verbs are represented
by psd matrices of the same size<, that is, we let = 2 PSD< and E 2 PSD<.
We are looking for a composition rule for these psd matrices. We call the
desired operation Compr (for reasons we shall later see), and want it to be a
map

Compr : M< ⇥M< ! M<.

The minimal two properties required from this map are the following:
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(i) Positivity preserving

If =, E are psd, then Compr(=, E) is psd:

Compr : PSD< ⇥ PSD< ! PSD<

(ii) Hyponymy preserving

If hyponymy is represented by the Löwner order 6,1

=1 6 =2, E1 6 E2 =) Compr(=1, E1) 6 Compr(=2, E2)

Although these two properties are the most important ones, we now
consider another property:

(iii) Bilinearity

Compr is linear in each of its arguments, namely for U 2 R:

Compr(U=, E) = UCompr(=, E)
Compr(=, UE) = UCompr(=, E)
Compr(= + =0, E) = Compr(=, E) + Compr(=0, E)
Compr(=, E + E0) = Compr(=, E) + Compr(=, E0)

Assumption (iii) has two advantages. The first one is that if the map is
positivity preserving on the Cartesian product [(i)] and bilinear [(iii)], then
it is hyponymy preserving [(ii)]:

Lemma 1. Assumptions (i) and (iii) imply (ii).

Proof. Assume that =2 > =1 and E2 > 0. Using (i) we have that Compr(=2�
=1, E2) > 0, and using (iii) that Compr(=2, E2) > Compr(=1, E2). Now
assume that E2 > E1 and =1 > 0. Following the same argument we obtain
that Compr(=1, E2) > Compr(=1, E1). By transitivity of being psd, we obtain
that Compr(=2, E2) > Compr(=1, E1), which is condition (ii).

1If d, f are psd, then d 6 f i� f � d > 0, i.e. if f � d is itself psd.
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The second advantage of bilinearity is that it allows reformulating Compr
in a convenient way. Since Compr is linear in both components, we construct
the following linear map:

M< ! Lin(M<,M<)
E 7! (Compr(·, E) : = 7! Compr(=, E))

Note that linearity of Compr in the noun component is necessary for the
image of this map to be Lin(M<,M<). In contrast, linearity in the verb
component is necessary for this map itself to be linear. By slight abuse of
notation we denote this new map also by Compr:

Compr : M< ! Lin(M<,M<).

Now, assumption (i) applied to this new map means that psd matrices are
mapped to positivity preserving maps,

Compr : PSD< ! PP(M<,M<),

where PP(M<,M<) is the set of positivity preserving linear maps from
M< to M<, i.e. those that map psd matrices to psd matrices. To make
things more tractable, one can use the isomorphism

Lin(M<,M<) ! M< ⌦ M<

i 7!
’
8, 9

i( |48ih4 9 |) ⌦ |48ih4 9 |,

where {|48i} is an orthonormal basis of R<. Using this isomorphism,
PP(M<,M<) corresponds to the set of block positive matrices BP(M< ⌦
M<) on the tensor product space.2 Summarizing, we are trying to construct
a linear map

Compr : M< ! M< ⌦ M<

that maps psd matrices to block positive matrices. So far, this is just a
reformulation of conditions (i) and (iii).

2A matrix d 2 M< ⌦ M< is block positive if (hE | ⌦ hF |)d( |Ei ⌦ |Fi) � 0 for all
vectors |Ei, |Fi.
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To make things more tractable, we now further strengthen the conditions
on the map. Namely, we require Compr to map psd matrices in M< to psd
matrices in M< ⌦ M< � M<2 , i.e. positivity preserving itself. Using the
isomorphism above, this means that Compr maps psd matrices to completely
positive (CP) maps from M< to M< (see table 1):

Compr : PSD< ! CP(M<,M<).

Table 1. Correspondence between linear maps M< ! M< and elements in
M< ⌦ M<, known as the Choi-Jamio�kowski isomorphism.

Linear map M< ! M< $ Element in M< ⌦ M<

Positivity preserving map $ Block positive matrix
Completely positive map $ Positive semidefinite matrix

And since we are still not running out of steam, we require Compr not
only to be positivity preserving but also to be completely positive itself. In
total, we are trying to construct a completely positive map

Compr : M< ! M< ⌦ M< �M<2

E 7!
’
;

 ;E 
⇤
; (4)

where we have used the well known fact that every completely positive map
admits a Kraus decomposition, for certain Kraus operators ; 2 R<⌦M< �
M<2,<. The proof that such decomposition exists can be found in Nielsen
and Chuang (2010), Theorems 8.1 and 8.3.

In summary, we are asking for a stronger condition than just (i) and (iii).
On the other hand, the weaker forms of maps mentioned above do not admit a
closed description, whereas completely positive maps do. By Stinespring’s
Dilation Theorem, all completely positive maps can be expressed as a ⇤-
representation followed by a compression (Paulsen, 2002). This is the reason
for denoting this operation Compr and is precisely what gives rise to the Kraus
decomposition of the map. This also fits well with the electric guitar pedal
notation from Coecke and Meichanetzidis (2020), as can be seen in figure 1.

Note that in general, Compr is non-commutative, i.e. when translated
back to the initial setup of

Compr : M< ⇥M< ! M<
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Meaning of a noun =

Meaning of a verb E

Compr(=, E)

Figure 1. Not only Fuzz and Phaser, but also Compression is a valuable guitar
pedal. The operation Compr takes as input an element of M< ⇥M< (denoted
=, E) representing the meaning of a noun and the meaning of a verb, and it
outputs Compr(=, E), representing the meaning of the sentence = E.

we will generally have Compr(=, E) < Compr(E, =). This is a suitable
property, reflecting that a word’s position in a sentence has both syntactic
and semantic roles. Note also that neither Fuzz nor Phaser (nor KMult nor
BMult) are linear in the verb component, i.e. they do not fulfill (iii), and
are thus not special cases of Compr. However, Mult is a particular case of
Compr, as we shall see.

4. Building nouns and verbs in CPM(FHilb)

In order to build a psd matrix for a given word F, we require information
about its hyponyms {⌘8}8 and vectors {|⌘8i}8 representing each of the {⌘8}8 .
We can then form the matrix

d(F) =
’
8

|⌘8i h⌘8 | 2 , ⌦,⇤
.

where,⇤ is the dual of the column vector space, . d(F) is then normalised.
In this work, we normalise using the infinity norm, that is, we divide by the
maximum eigenvalue. This has been shown to have nice properties (van de
Wetering, 2017).

As proposed in Lewis (2019a), the set of hyponyms {⌘8}8 may, for exam-
ple, be gathered from WordNet (Miller, 1995) or in a less supervised manner
by extracting hyponym-hypernym pairs using Hearst patterns (Hearst, 1992;
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Roller et al., 2018). Vectors representing each hyponym can be taken from
pretrained word vectors such as word2vec (Mikolov et al., 2013) or GloVe
(Pennington et al., 2014).

This approach to representing word meanings puts all representations in
the shared space, ⌦,⇤. If we are working in the category CPM(FHilb),
this is the right kind of representation for nouns, but not for functional words.
To transform a psd matrix d(verb) 2 PSD< to a psd matrix in M<2 , we use
the composition rule Compr proposed in section 3:

Compr : M< ! M< ⌦ M< �M<2

E 7! Compr(·, E)

4.1 Characterising Compr diagrammatically

We now characterise Compr, Compr(·, E), and Compr(=, E) in the diagram-
matic calculus for FHilb. This will allow us to generate simple examples of
Compr in a systematic manner. Equation (4) states:

Compr(·, E) =
’
;

 ;E 
⇤
;

Diagrammatically, this gives us:

Compr =

 

 

, Compr(·, E) =
 

 

E

The application of Compr(·, E) to = is then:

Compr(=, E) =
 

 

E= (5)
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This style of diagram corresponds to the usual DisCoCat diagram style via
some reshaping. Given that we have representations of E and of =, what
should the  ; look like? In full generality, parameters of the  ; could
be perhaps inferred using regression techniques, in a similar approach to
that suggested in Lewis (2019b), inspired by Socher et al. (2013), or via
methods like those in Baroni and Zamparelli (2010); Grefenstette et al.
(2013). However, we can also consider purely “structural” morphisms,
generated from cups, caps, swaps, and spiders. In the following, we give
a number of options to specify  . We divide up the internal structure of
 by specifying the number of spiders inside  . In the following, diag(�)
denotes the matrix obtained by setting all o�-diagonal elements of � to 0,
tr(�) denotes the trace of �, and I denotes the identity matrix.

0 spiders

 = , Compr(E) (=) = E= = E= = tr(=)E (6)

 = , Compr(E) (=) = E= = E= = tr(=E)I (7)

 = , Compr(E) (=) = E= = E= = tr(E)= (8)
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1 spider

 = , Compr(E) (=) = E= = E= (9)

= diag(=)diag(E)

2 spiders

 = , Compr(E) (=) = E= = E= = <=
’
8 9

E8 9 (10)

 = , Compr(E) (=) = E= = E= (11)

= <tr(=E)
’
8 9

|48i h4 9 |

 = , Compr(E) (=) = E= = E= = <E
’
8 9

=8 9 (12)
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 = , Compr(E) (=) = E= = E= (13)

= tr(=)
’
8 9

E8 9

’
:;

|4:i h4; |

 = , Compr(E) (=) = E= = E= (14)

= I
’
8 9

=8 9

’
:;

E:;

 = , Compr(E) (=) = E= = E= (15)

= tr(E)
’
8 9

=8 9

’
:;

|4:i h4; |

 = , Compr(E) (=) = E= = E= (16)

= tr

 ’
8 9

=8 9E8 9 |48i h4 9 |
! ’

:;

|4:i h4; |
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 = , Compr(E) (=) = E= = E= (17)

=
’
8 9

=8 9diag(E)

 = , Compr(E) (=) = E= = E= (18)

=
’
8 9

E8 9diag(=)

 = , Compr(E) (=) = E= = E= (19)

= <
’
8 9

E8 9=8 9 |48i h4 9 | = <Mult(=, E)

3 spiders The instances with 3 spiders are subsumed by the instances with
2 spiders, since to have 3 spiders we would need two spiders with one leg
and one spider with two legs. A spider with two legs is either a cup, cap,
or the identity morphism, hence these have been included in the 2 spider
instances.
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4 spiders

 = , Compr(E) (=) = E= = E= (20)

= <
’
8 9

=8 9

’
:;

E:;

’
AB

|4A i h4B |

This gives us a whole range of possible instantiations of Compr. Some of
these options are more interesting than others. Options that give us a multiple
of the identity matrix or a multiple of

Õ
8 9 |48i h4 9 | for orthonormal basis

{|48i}8 are less interesting since this means that all phrase representations
will be mapped to the same psd matrix, di�ering only by a scalar. This
means that although hyponymy information may be preserved, information
about similarity will be lost.

The instantiations that preserve some information about similarity are
(6), (8), (9), (10) (12), (17), (18), and (19), the last of which was already
shown to work well in Lewis (2019a). Of these, (6), (8), (10) (12), (17),
and (18) only preserve similarity information about one of the components
of the sentence, i.e. either the noun or the verb. The operators (9) and (19)
each preserve some similarity information about both words.

All of these operators can be seen as a lifting of the psd matrix for the
verb from the space ,⇤ ⌦, into , ⌦,⇤ ⌦,⇤ ⌦, , such that it can then
act on the psd matrix for the noun to produce a psd matrix for the sentence.
We will now examine each operator and their theoretical justifications.

Each of the operators (6) and (8) has the e�ect that one of the operators
E or = is preserved and it is weighted by the trace of the other. These
models assert that similarity between these short word combinations is best
modelled by taking account only of one of the words (E or =), but that the
entailment relation between the sentences is also a�ected by the hyponymy
relation obtaining between the other word (= or E), since F1 6 F2 =)
tr(F1)  tr(F2) for psd matrices F1 and F2

The models represented in equations (12) and (10) have similar prop-
erties. One of the operators E or = is preserved, weighted by the sum of
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the entries of the other operator. Again, this asserts that similarity between
these short word combinations is best modelled by taking account only of
one of the words, but that the entailment relationship is also a�ected by the
other word in the sentence, since F1 6 F2 =) Õ

8 9 F18 9  Õ
8 9 F28 9 for

psd matrices F1 and F2.
In equations (17), (18) and (9), we use the psd matrix with o�-diagonal

elements discarded, 3806(F). This construction is somewhat harder to inter-
pret. We can view dropping the o�-diagonal elements as losing information
about the correlations of the dimensions of the vector space with each other,
retaining only information about how a given dimension of the vector space
correlates with itself. Furthermore, given a psd matrix F, the closest diago-
nal matrix to F under the Frobenius norm is 3806(F). We therefore obtain
the nearest representation to F that neglects correlations between dimen-
sions. In (17) and (18) we again only retain one of the words in the short
phrase for similarity purposes, either E or =, and weight this by the sum of the
entries in the other (= or E), thereby contributing to the entailment strength
between the short sentences. In (9) we retain both the diagonal matrices,
and form their pointwise multiplication. This retains semantic information
about both the noun and the verb, and at the same time contributes to the
entailment strength between the two sentences.

Lastly, the model (19) is an extension of the models seen in Grefenstette
and Sadrzadeh (2011) and Kartsaklis et al. (2012), applied to intransitive
verbs. This model uses Frobenius algebras in the category CPM(FHilb), as
was done in Piedeleu et al. (2015), to lift the representation of the verb from
the space ,⇤ ⌦, to the space , ⌦,⇤ ⌦,⇤ ⌦, . The outcome of this is
that the matrices are pointwise multiplied together. This operation retains
the full matrix for each word.

5. Demonstration

To test these composition methods, we follow the setup in Lewis (2019a,
2020). We firstly build psd matrices using GloVe vectors and lists of hy-
ponyms. We use WordNet (Miller, 1995) to determine the hyponyms of a
given word. We use GloVe vectors of dimension 50. We use a set of datasets
from Kartsaklis and Sadrzadeh (2016) that contain pairs of short phrases,
for which the first either does or does not entail the second.
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In addition, we use a graded form of the Löwner ordering to measure
hyponymy, introduced in Lewis (2019a), since in general the crisp Löwner
ordering will not be obtained between two psd matrices � and ⌫. This
graded form is measured as follows. Given two psd matrices � and ⌫, if
� 6 ⌫ then � + ⇡ = ⌫ where ⇡ is itself a psd matrix. If this does not hold,
we can add an error term ⇢ so that

� + ⇡ = ⌫ + ⇢ .

In the worst case, we can set ⇢ = �, so that ⇡ = ⌫, and in fact we will
always have that ⇢ 6 �. A graded measure of hyponymy is obtained by
comparing the size of ⇢ and �. We set

:⇢ = 1 � | |⇢ | |
| |�| | ,

where | | · | | denotes the Euclidean norm, | |�| | =
p
tr(�⇤

�). The crisp
Löwner order is recovered in the case that ⇢ = 0, so that :⇢ = 1. A second
measure of graded hyponymy is obtained as follows:

:⌫� =
Õ

8 _8Õ
8 |_8 |

(21)

where _8 is the 8th eigenvalue of ⌫ � � and | · | indicates absolute value.
This measures the proportions of positive and negative eigenvalues in the
expression ⌫ � �. If all eigenvalues are negative, :⌫� = �1, and if all are
positive, :⌫� = 1. This measure is balanced in the sense that :⌫� = �:�⌫.

Datasets The datasets were originally collected for Kartsaklis and Sadrzadeh
(2016). They consist of ordered pairs of short phrases in which the first en-
tails the second, and also the same pair in the opposite order, so that the
first phrase does not entail the second. The datasets were gathered using
WordNet as source. The datasets contain intransitive sentences, of the form
subject verb, verb phrases, of the form verb object and transitive sentences,
of the form subject verb object. For example:

summer finish, season end, true

season end, summer finish, false
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The datasets have a binary classification, so we measure performance
using area under receiver operating characteristic (ROC) curve. If we imag-
ine that our graded measure is converted to a binary measure by giving a
threshold, area under ROC curve measures performance at all cuto� thresh-
olds. A value of 1 means that the graded values are in fact a completely
correct binary classification, a value of 0.5 means that the graded values are
randomly correlated with the correct classification, and a value of 0 means
that the graded values are binary values that are classified in exactly the
wrong way (a value of 1 is mapped to 0 and 0 to 1).

Models We test the following models, for =, E 2 M<. We denote by
diag(�) the matrix obtained by setting all o�-diagonal elements of � to 0.
In order to retain the property that the maximum eigenvalue is less than or
equal to 1, we divide by the dimension < or by <2 where necessary.

1. Traced noun: Compr(=, E) = tr(=)
< E

2. Traced verb: Compr(=, E) = tr(E)
< =

3. Diag: Compr(=, E) = diag(=)diag(E)

4. Summed noun: Compr(=, E) = E
<2

Õ
8 9 =8 9

5. Summed verb: Compr(=, E) = =
<2

Õ
8 9 E8 9

6. Diag verb: Compr(=, E) = diag(E)
<2

Õ
8 9 =8 9

7. Diag noun: Compr(=, E) = diag(=)
<2

Õ
8 9 E8 9

8. Mult: Compr(=, E) = Õ
8 9 E8 9=8 9 |48i h4 9 |

Above, we have specified models for sentences of the form subj verb. For
verb phrases, we treat the verb as E and the object as =, so the models
di�er based on the grammatical type of the word, rather than its position
in the argument list. For sentence of the form subject verb object, we first
combine the verb and the object, according to their grammatical type, and
then treating this verb phrase as an intransitive verb, combine the subject and
verb phrase, again according to grammatical type. So, for example, iterating
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the composition Traced Verb on psd matrices B, E, > for subject, verb, and
object, we obtain:

Compr(B,Compr(>, E)) = Compr(B, tr(E)
<

>) = tr(E)tr(>)
<
2

B

We also test two combined models:

1. Traced addition: Compr(=, E) = tr(=)
2< E + tr(E)

2< =

2. Summed addition: Compr(=, E) = E
<2

Õ
8 9 =8 9 + =

<2

Õ
8 9 E8 9

We compare with a verb-only baseline and with Fuzz and Phaser. These
last two are tested in two directions:

1. Verb only: Verb only(=, E) = E

2. Fuzz: Fuzz(=, E) =
Õ

8
p
?8%8=%8

p
?8 where

Õ
8 ?8%8 is the spectral

decomposition of E

3. Fuzz switched: Fuzz-s(=, E) =
Õ

8
p
@8&8E&8

p
@8 where

Õ
8 @8&8 is

the spectral decomposition of =

4. Phaser: Phaser(=, E) = p
E=

p
E

5. Phaser switched: Phaser-s(=, E) = p
=E

p
=

We also compare with the best results from Kartsaklis and Sadrzadeh
(2016). To test for significance of our results, we prepare 100 bootstrap
sample datasets, i.e. for each dataset with = datapoints, we create 100 datasets
with = datapoints by sampling from the original with replacement (Efron,
1992) to create a distribution over the test statistic, and compare between
models using a two sample t-test. We apply the Bonferroni correction to
compensate for multiple comparisons. To compare with the figures from
Kartsaklis and Sadrzadeh (2016) we use the same bootstrapped samples and
perform a one sample t-test.
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Table 2. Area under ROC curve for :⇢ and :⌫� graded hyponymy measures.
Figures are mean values of Area under ROC curve calculated for 100 datasets of
size = sampled from the original dataset with replacement, where = is the size of
the original dataset. �0 indicates significantly better than the best model from
Kartsaklis and Sadrzadeh (2016), ? < 0.01, �⇤ indicates significantly better
than both variants of Fuzz, ? < 0.01, �+ indicates significantly better than both
variants of Phaser, ? < 0.01.

:⇢ measure :⌫� measure
SV VO SVO SV VO SVO

K&S 2016 best 0.84 0.82 0.86 0.84 0.82 0.86
Verb only 0.599 0.588 0.647 0.787 0.743 0.839
Fuzz 0.841 0.798 0.908 0.921 0.899 0.971
Fuzz sw. 0.807 0.773 0.919 0.932 0.913 0.967
Phaser 0.819 0.755 0.913 0.920 0.888 0.970
Phaser sw. 0.749 0.726 0.918 0.931 0.912 0.971
Traced noun 0.847 0.808+ 0.9520⇤+ 0.9340+ 0.9090 0.9760⇤

Traced verb 0.811 0.771 0.9360⇤+ 0.9360⇤+ 0.9110 0.9590

Diag 0.8990⇤+ 0.8600⇤+ 0.9460⇤+ 0.9360+ 0.9150+ 0.9690

Sum. noun 0.8670+ 0.808+ 0.9360⇤+ 0.9260 0.8830 0.9710

Sum. verb 0.799 0.776+ 0.9020 0.8910 0.8850 0.9350

Diag verb 0.9190⇤+ 0.8740⇤+ 0.9650⇤+ 0.9200 0.8710 0.9620

Diag noun 0.8740+ 0.8530⇤+ 0.9590⇤+ 0.8820 0.8740 0.9540

Mult 0.848+ 0.8160⇤+ 0.9430⇤+ 0.9440⇤+ 0.9160⇤+ 0.9700

Traced add. 0.8690+ 0.8310⇤+ 0.9650⇤+ 0.9360⇤+ 0.9090 0.9850⇤+

Sum. add. 0.8580+ 0.826⇤+ 0.9400⇤+ 0.9200 0.8960 0.9680
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5.1 Results

Results are presented in table 2. As in previous work, the :⌫� measure
performs better than the :⇢ measure across almost every model and dataset.
In most cases, models in which only the verb contributes to the semantic
information of the sentence, i.e. Traced noun, Sum. noun, and Diag verb
perform better than models in which only the noun contributes to the semantic
information of the sentence. Exceptions are the SV dataset under the :⌫�

measure, where Traced verb marginally outperforms Traced noun, and the
VO dataset under the :⌫� measure where Traced verb outperforms Traced
noun, Sum. verb outperforms Sum. noun, and Diag noun outperforms
Diag verb.

Table 3. Mean values of area under ROC curve across the same 100 boot-
strapped datasets

:⇢ measure :⌫� measure
SV VO SVO SV VO SVO

Verb only 0.599 0.588 0.647 0.787 0.743 0.839
Diag verb only 0.766 0.721 0.800 0.786 0.745 0.830
Sum verb 0.692 0.682 0.689 0.649 0.636 0.642
Trace verb 0.752 0.792 0.794 0.704 0.659 0.742
Subj only 0.710 - 0.725 0.906 - 0.926
Diag subj only 0.870 - 0.907 0.902 - 0.929
Sum subj 0.860 - 0.878 0.833 - 0.847
Trace subj 0.877 - 0.908 0.853 - 0.889
Obj only - 0.680 0.647 - 0.891 0.888
Diag obj only - 0.844 0.834 - 0.745 0.883
Sum obj - 0.791 0.733 - 0.741 0.674
Trace obj - 0.858 0.813 - 0.815 0.754

To investigate the pattern that models retaining the meaning of the verb
tend to perform better, we run another set of baseline models that look at
performance of single words - i.e. the verb alone, the subject or object
alone, their diagonals, and at the magnitude of the trace or sum of each.
These are presented in table 3. We see that although the verb representations
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themselves do not score particularly highly, just comparing the trace or the
sum of the nouns gives a remarkably good score, at least under the :⇢
measure. It would therefore seem that the benefit of the models that preserve
the semantic information of the verb is in the information on hyponymy
received from the noun(s).

Looking at table 3 another striking pattern is that under the :⇢ measure,
discarding o�-diagonal elements on the matrices (Diag verb only, Diag
subj only, Diag obj only) increases the graded hyponymy values between
the words, in many cases by a substantial amount. Recall the way that these
matrices are built. We take vectors for the hyponyms of the nouns, form the
rank-1 projector corresponding to each vector, add them together, and then
normalise. Discarding the o�-diagonal elements of these matrices means
that we are only interested in how the dimensions of the vector spaces are
correlated with themselves, and not in how dimensions of the vector space
correlate with each other.

As mentioned, under the Frobenius norm, forming a diagonal approx-
imation to a given square matrix is optimized by discarding o�-diagonal
elements, so that the resulting diagonal matrix is the nearest approximation
to the original. If the square matrix is row or column diagonally dominant,
meaning that the diagonal elements of the matrix are larger than the sum of
the absolute values of the o�-diagonals in that row/column, then the diago-
nal approximation is particularly close. We checked the extent to which the
matrices built are diagonally dominant, however we found that there is not a
single row/column across the whole set of matrices for which the diagonal
value dominates. The impact of discarding o�-diagonal elements is there-
fore not due to the diagonal matrices being particularly good approximations
to the original matrix.

Furthermore, under the :⇢ measure, even taking the trace or the sum of
the matrix improves the hyponymy score. We can see how the interaction
of discarding o�-diagonal elements, together with weighting the resulting
representation, produces the high scores we see in table 2. Investigation into
the reason why discarding the o�-diagonal elements of the matrices, or even
taking the trace or sum of these matrices positively a�ects the :⇢ measure
is a line of future work.

This pattern does not hold for the :⌫� measure. Here, discarding the
o�-diagonal elements has a slight detrimental e�ect in most cases. At the
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single word level, scores are generally higher than for the :⇢ measure. This
was not seen in previous work (Lewis, 2019a), which could be a factor of
the particular vocabulary used in the dataset.

Under the :⌫� measure, the model Mult performs strongly on the SV
and VO datasets. The Mult model is an extension of the Frobenius copy
models proposed in Kartsaklis et al. (2012), Kartsaklis et al. (2016), and
was originally proposed for use in the CPM(FHilb) context in Piedeleu
et al. (2015). The success of a multiplicative model has been shown in
previous work at both the pure vector level (Grefenstette and Sadrzadeh,
2011; Kartsaklis et al., 2012, 2016) and at the density matrix level(Piedeleu
et al., 2015; Lewis, 2019a), and so it is unsurprising that good results are also
seen here. This is perhaps borne out by the fact that under the :⌫� measure,
the full density matrices perform as well as, or better, than matrices with
the o�-diagonals discarded, unlike the :⇢ measure, and also by the fact
that the single matrices perform relatively strongly by themselves. As a
consequence, taking both full unreduced matrices and combining them has
the potential to produce a strong representation.

On the SVO dataset, the traced addition model performs strongly. Recall
that this model applied at the level of two matrices is an average of the two
matrices, weighted by the trace of the other. Applied to the SVO datasets,
we firstly combine the V and O matrices and then combine this with the S
matrix. This ordering is motivated by grammatical considerations. This has
the impact that the S matrix contributes more to the overal semantics of the
sentence. Examining the performance of Subj only in table 3 and of Traced
noun in table 2, we see that both of these models perform strongly on the
SVO dataset, suggesting that the dominance of the matrix for S, coupled with
additional information about V and O, enables the Traced addition model
to perform strongly here. It would be possible to include a number of further
linear combinations of these operators, and this is an area of future research.

Across every model, for both hyponymy measures, performance on the
VO dataset is worst and performance on the SVO dataset is best. This may be
attributable to the sizes of the datasets: SV has 270 sentence pairs, SVO has
140 sentence pairs, whereas VO has 436 sentence pairs. A potential aspect
that may make a given dataset more di�cult is the number of di�erent senses
a word can have. We computed the mean number of synsets per word as
given in WordNet, and found that this was fairly consistent across datasets,
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with SV having on average 8.9 synsets per word, VO having 8.5 synsets per
word, and SVO having 8.7 synsets per word. We also make a comparison
of the total number of synsets for the words in the first sentence of a pair
with the total number of synsets for the words in the second sentence of a
pair. The number of synsets could a�ect performance adversely, if a word
is used in many di�erent senses, or it could a�ect performance positively,
by enabling the creation of a matrix that is more mixed. If a word F1 has a
broader meaning than a word F2, then we would expect F2 to be a hyponym
of F1. We therefore compute the total number of synsets for each sentence
in the pairs of sentences for which entailment holds. We look at whether the
total number of synsets for the first, entailing, sentence is smaller than the
total number of synsets for the second, entailed, and more general sentence.
If the second sentence has a larger number of synsets that the first, we say
that there is a positive synset di�erence.

Table 4. Proportions of entailing sentence pairs with positive synset di�erence
in each dataset from Kartsaklis and Sadrzadeh (2016).

Dataset SV VO SVO
No. entailing pairs 135 218 70
No. positive synset di�erence 74 113 44
Proportion with positive synset di�erence 0.54 0.51 0.62

Table 4 shows that the SVO dataset has a slightly higher proportion of
sentence pairs with a positive synset di�erence. However, it is not clear
whether this is beneficial. It could be the case that having a large number of
synsets produces noise in the word representations which can then be detri-
mental when combining words or computing graded hyponymy, particularly
given that the synsets cover the di�ering meanings of ambiguous words.
In order to investigate this, we take a deeper look at the performance of the
models on each dataset. In particular, we look at the sentences in each dataset
for which more than half the models fail to correctly predict the entailment
direction. In table 5 we see that out of the ‘di�cult’ sentences – those for
which more than half the models fail – a smaller proportion (between 0 and
0.27) have a positive synset di�erence, in comparison to the proportion of
sentences with positive synset di�erence in each dataset.

Similarly, in table 6, we see that of those sentences where all models
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Table 5. Numbers of sentences that more than half the proposed models fail
to correctly predict (Num. S), together with number of those sentences with
positive synset di�erence (Pos. Syn) and the corresponding proportion.

:⇢ measure :⌫� measure
SV VO SVO SV VO SVO

Num. S 32 74 10 36 74 10
Pos. syn 6 18 0 8 20 0
Proportion 0.18 0.24 0 0.22 0.27 0

correctly predict the entailment value, a higher proportion (between 0.69
and 0.78) of sentences with a positive synset di�erence are seen. This
indicates that although modelling a number of di�erent senses in each word
could potentially be detrimental, in fact using these di�erent senses can be
beneficial for this task. This is potentially because many of the senses for a
given word in WordNet are related to each other.

Table 6. Numbers of sentences that all models predict correctly (Correct S),
together with number of those sentences with positive synset di�erence (Pos.
Syn) and the corresponding proportion.

:⇢ measure :⌫� measure
SV VO SVO SV VO SVO

Correct S 134 206 84 152 238 90
Pos. syn 96 150 64 106 168 70
Proportion 0.71 0.73 0.76 0.69 0.71 0.78

6. Computing values for Compr from data

We undertake a small scale experiment to compute possible values for the
operator Compr from the entailment datasets. In order to do this we introduce
some simplifications to our model. We originally stated that Compr should
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be a map Compr : M< ! M< ⌦ M<, so that when applied to a positive
operator for a verb E , it gives Compr(�, E) : M< ! M<. In fact, in the
case of intransitive verbs, we can consider Compr(�, E) to be a map from
the noun space M< to the sentence space MB, i.e. we have Compr(�, E) :
M< ! MB. For a pair of intransitive sentences, when Compr(�, E) is
applied to a noun =, we then require that Compr(=1, E1) 6 Compr(=2, E2).
In particular, we can specify that the sentence space MB is the set of psd
matrices of dimension 1, i.e. the positive reals. We use this simplification,
and say that for a sentence (1 to entail a sentence (2, we require that (1  (2,
where the order now refers to the usual order on the reals.

The second simplification we employ is to say that the operator Compr
is pure, so that in equation (4), repeated below,

Compr : M< ! M< ⌦ M< �M<2

E 7!
’
;

 ;E 
⇤
;

we have only one matrix  rather than a set of matrices { ;};.
Diagrammatically, the first simplification appears as follows:

Compr =

 

 

and the second gives:

Compr =
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The application of Compr(·, E) to = is then:

Compr(=, E) =
 

 

E= (22)

i.e. we have ( = tr(= E ⇤).
Our aim is now to find a set of parameters for one matrix  , such that

for given =1, E1, =2, E2,

tr(=1 E1 ⇤)  tr(=2 E2 ⇤)

whenever (1 entails (2.
We require

tr(=1 E1 ⇤)  tr(=2 E2 ⇤)

We therefore propose the loss function

L( ) = tr(=1 E1 ⇤) � tr(=2 E2 ⇤)

which we want to minimise.
Since this function can get arbitrarily small, we also introduce a penalty

term to ensure that the magnitude of  does not get too large, specifically
the square of the Frobenius norm of  , giving us:

L( ) = tr(=1 E1 ⇤) � tr(=2 E2 ⇤) + 2tr( ⇤
 ) (23)

where 2 is a hyperparameter that we will choose. The gradient of L with
respect to  <9 is

mL
m <9

=
’
86

(=18< 86E16 9 � =28< 86E26 9 )

+
’
86

(=1<8 86E1 96 � =2<8 86E2 96 ) + 2 <9
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and we update  using gradient descent, that is, we update K according to:

 7!  � ⌘ mL
m <9

where ⌘, the step size, will be selected via hyperparameter optimisation. We
optimise over 3 hyperparameters: the value of 2 in (23), the step size ⌘ for
the gradient descent, and the number of times we run over the dataset.

To train the operator we use the SV and VO datasets from Kartsaklis and
Sadrzadeh (2016). We train only on the true entailing sentences, since by
construction of the model and of the datasets, if we are correct on the true
entailing pairs, we will also be correct on the false entailing pairs, and fur-
thermore there is exactly one false entailing pair for each true entailing pair.
We use 0.8 of the dataset for training, and 0.2 for testing. We use accuracy
to measure performance, since our model now makes binary predictions.
Within the training set, we use 5-fold cross-validation to pick the optimum
values of the hyperparameters. The best values of the hyperparameters were
2 = 0.01, ⌘ = 0.01, and 2 dataset repetitions. The mean validation accuracy
for the highest scoring parameters was 0.805 and the mean training accuracy
was 0.807.

To assess the performance on the test sets, we formed 100 bootstrap
sample datasets from each of the SV test set and the VO test set, and assessed
accuracy on each sample dataset. We found that the mean test accuracy for
the SV dataset across the 100 datasets was 0.924 with a standard deviation
of 0.039, and the mean test accuracy for the VO dataset across the sample
datasets was 0.757 with a standard deviation of 0.023.

The performance on the SV test set is surprisingly high. We looked
at the test set sentences to examine whether they were ‘easy’ in terms of
the positive synset di�erence, and found that a slightly higher proportion of
sentence pairs in the test set have a positive synset di�erence in comparison
to the dataset as a whole (0.59 vs. 0.54). On the VO dataset, where
performance was lower, 0.54 sentences had a positive synset di�erence in
comparison with 0.51 in the whole dataset, so it does not seem as if this
property of the sentence pairs can explain the di�erence in performance.

To look at performance at the sentence level, we again compare with a
simple count of the synsets in each sentence. Within the SV dataset, out
of the sentences that were correctly predicted to entail, 43 had a negative
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synset di�erence, indicating that the learned Compr function was able to
overcome the di�erence even when the entailing sentence was in some sense
broader than the entailed sentence. Out of the sentences that were incorrectly
predicted not to entail, 4 did have a positive synset di�erence. Similarly, on
the VO dataset, out of the sentences that were correctly predicted to entail, 71
had a negative synset di�erence. Out of the sentences that were incorrectly
predicted not to entail, 17 had a positive synset di�erence. In general, the
Compr function was able to map sentences into the correct relation.

Whilst these results are a little mixed, performance is promising. We
are training a matrix of dimension 50, whereas in full generality we would
have many more parameters to play with. Reversing some of the simpli-
fications and introducing a more sophisticated training regime would help
performance. One avenue for exploration is to look at di�erent training
regimes that can take into account the di�erences in grammatical structure
between SV and VO type sentences, as well as generalising to more complex
sentence structures.

7. Discussion

We have presented a general composition rule called Compr for converting
a psd matrix for a functional word such as a verb or an adjective into a
CP map that matches the grammatical type of the word. Compr preserves
hyponymy, in contrast to previous approaches like Fuzz and Phaser. In full
generality, we would like to learn the parameters of Compr from text corpora
coupled with entailment datasets such as SNLI (Bowman et al., 2015b). In
this paper we have provided a step towards that. We first looked at ways
in which Compr may be defined using just structural morphisms such as
cups, caps, and spiders. In these experiments, models that retained semantic
information about the verb whilst using entailment information from the
nouns were most successful. The best model variant was dependent on
the variant of graded entailment used. Under the :⌫� measure, the Mult
model was most successful. This pattern has been seen in previous research
Grefenstette and Sadrzadeh (2011); Kartsaklis et al. (2012), and is hence to
be expected. Similarly, the fact that the Traced Addition model is successful
in unsurprising, since additive models have been successful in e.g. Mitchell
and Lapata (2010). What is more surprising is that the Diag verb model
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works well. Under this model, the o�-diagonal elements of the density matrix
were discarded, which would seem to result in information loss. Digging
into this phenomenon further, we saw that at a single word level, under the
:⇢ measure, taking the diagonal of the matrix almost always improved the
hyponymy predictions, as did taking the trace or the sum of the entries of the
matrix. More research into this and into the properties of the :⇢ measure is
ongoing.

There was also a di�erence in performance on the datasets. Overall,
the VO dataset was harder than the SV dataset, and the SVO dataset got the
highest performance. We analysed the sentences of the datasets in terms of
their numbers of synsets, and found that the harder datasets tended to have
more sentence pairs with larger numbers of synsets in the entailing sentence.
The models we proposed tended to fail more frequently on these sentences.

We proceeded to provide a model of Compr where the parameters of
Compr were estimated from information about entailment in the SV and VO
datasets. Whilst performance of this learnt model was mixed, this is likely
due to simplifications in the model. We again saw the pattern that the VO
dataset had lower performance than the SV dataset. We also found that the
Compr map was able to provide the correct prediction in many cases where
the entailing sentences had a negative synset di�erence.

Future work for estimating the parameters of Compr from text corpora
will involve desimplifying the model, so that sentences are represented by
psd matrices rather than positive scalars and so that Compr is no longer
pure. We then propose to extend the learning mechanisms begun here to use
resources such as SNLI Bowman et al. (2015b) as input. Ideally, we would
like to learn the original psd matrices from text corpora as well. This has
been done for ambiguity in Piedeleu et al. (2015); Meyer and Lewis (2020).

The approach we have taken, namely that of defining a map that converts
representations of functional words to a higher-order type, has also been seen
in vector-based models of meaning. In Kartsaklis et al. (2012), Grefenstette
and Sadrzadeh (2011), word vectors and matrices are converted using Frobe-
nius algebras which the composition Mult is a direct analogue. Furthermore,
in Mitchell and Lapata (2010), and recapitulated in Lewis (2019b), a bilin-
ear map ⇠ : # ⌦ # ! # that determines the composition of two vectors is
proposed. Under this approach, we would have

d(subj verb) = ⇠ (d(subj) ⌦ d(verb))
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and
d(subj verb obj) = ⇠ (d(subj) ⌦ ⇠ (d(verb) ⌦ d(obj)))

Our approach is an analogue to this one within the realm of psd matrices and
CP maps.

At present, we have given two possible graded measures of hyponymy.
More research into these measures is needed, including how they interact
with the composition methods we have specified. The datasets we have
so far tested on are relatively small and simple, and therefore testing on
datasets with more complex entailment relations such as FraCas (Cooper
et al., 1994) and on larger datasets such as the Stanford Natural Language
Inference (SNLI) dataset (Bowman et al., 2015b) is an important next step.

Another area of research is to be able to model hyponymy, composition,
and their interaction in what are known as downwardly monotone contexts,
using the natural logic introduced in Barwise and Cooper (1981); MacCart-
ney and Manning (2007). In particular, the datasets we have so far used all
contain what are called upwardly monotone inferences. Essentially, in the
titular sentence pair ‘Cats climb’ and ‘Mammals move’, the inference from
the first sentence to the second holds only if we assume that the sentences
are existentially quantified. In this context, the inference holds. However, if
we were to assume that the first sentence is universally quantified, i.e. that
it states ‘All cats climb’, the inference would not hold. Rather, an inference
such as ‘All tabbies climb’ would hold, where the second noun is now a
hyponym of the first rather than vice versa. This kind of inference is called
downwardly monotone. Yanaka et al. (2019) argue that many neural models
of word meaning are ine�ective at modelling this kind of inference, partly
due to the fact that the larger datasets such as SNLI or MultiNLI do not have
many downward entailing pairs. In that paper they introduce a new dataset
focusing on modelling a wider range of lexical and logical inferences, which
can be used to augment existing NLI datasets. Other research that covers
this area includes the previously mentioned Cooper et al. (1994) as well
as Bowman et al. (2015a) and Geiger et al. (2018), although the latter two
depend heavily on syntax rather than lexical semantics. The former is very
small for the purposes of large neural models but may have potential for
our purposes. Whilst we do not yet have a model of logical composition,
assertion, or truth, work is currently ongoing to develop a model of negation
within this framework (Lewis, 2020), and linking to recent work on quan-
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tification (Hedges and Sadrzadeh, 2019; Dostál et al., 2020) will be of use
here �.
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